Identifying selective inhibitors against the human cytosolic sialidase NEU2 by substrate specificity studies.
نویسندگان
چکیده
Aberrant expression of human sialidases has been shown to associate with various pathological conditions. Despite the effort in the sialidase inhibitor design, less attention has been paid to designing specific inhibitors against human sialidases and characterizing the substrate specificity of different sialidases regarding diverse terminal sialic acid forms and sialyl linkages. This is mainly due to the lack of sialoside probes and efficient screening methods, as well as limited access to human sialidases. A low cellular expression level of the human sialidase NEU2 hampers its functional and inhibitory studies. Here we report the successful cloning and expression of the human sialidase NEU2 in E. coli. About 11 mg of soluble active NEU2 was routinely obtained from 1 L of E. coli cell culture. Substrate specificity studies of the recombinant human NEU2 using twenty p-nitrophenol (pNP)-tagged α2-3- or α2-6-linked sialyl galactosides containing different terminal sialic acid forms including common N-acetylneuraminic acid (Neu5Ac), non-human N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid (Kdn), or their C5-derivatives in a microtiter plate-based high-throughput colorimetric assay identified a unique structural feature specifically recognized by the human NEU2 but not two bacterial sialidases. The results obtained from substrate specificity studies were used to guide the design of a sialidase inhibitor that was selective against human NEU2. The selectivity of the inhibitor was revealed by the comparison of sialidase crystal structures and inhibitor docking studies.
منابع مشابه
Synthesis of selective inhibitors against V. cholerae sialidase and human cytosolic sialidase NEU2.
Sialidases or neuraminidases catalyze the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates. Despite successes in developing potent inhibitors specifically against influenza virus neuraminidases, the progress in designing and synthesizing selective inhibitors against bacterial and human sialidases has been slow. Guided by sialidase substrate specificit...
متن کاملCrystal structure of the human cytosolic sialidase Neu2. Evidence for the dynamic nature of substrate recognition.
Gangliosides play key roles in cell differentiation, cell-cell interactions, and transmembrane signaling. Sialidases hydrolyze sialic acids to produce asialo compounds, which is the first step of degradation processes of glycoproteins and gangliosides. Sialidase involvement has been implicated in some lysosomal storage disorders such as sialidosis and galactosialidosis. Neu2 is a recently ident...
متن کاملExpression of a novel human sialidase encoded by the NEU2 gene.
Sialidases (E.C.3.2.1.18) belong to a group of glycohydrolytic enzymes, widely distributed in nature, which remove sialic acid residues from glycoproteins and glycolipids. All of the sialidase so far characterized at the molecular level share an Asp block, repeated three to five times in the primary structure, and an F/YRIP sequence motif which is part of the active site. Using a sequence homol...
متن کاملInhibitory effects and specificity of synthetic sialyldendrimers toward recombinant human cytosolic sialidase 2 (NEU2).
Human sialidase 2 (NEU2) is a cytoplasmic sialidase that degrades sialylglycoconjugates, including glycoproteins and gangliosides, via hydrolysis of terminal sialic acids to produce asialo-type molecules. Here, we first report the inhibitory effects of a series of synthetic sialyldendrimers comprising three types [Dumbbell(1)6-S-Neu5Ac(6), Fan(0)3-S-Neu5Ac(3) and Ball(0)4-S-NeuAc(4)] toward rec...
متن کاملNovel pH-dependent regulation of human cytosolic sialidase 2 (NEU2) activities by siastatin B and structural prediction of NEU2/siastatin B complex
Human cytosolic sialidase (Neuraminidase 2, NEU2) catalyzes the removal of terminal sialic acid residues from glycoconjugates. The effect of siastatin B, known as a sialidase inhibitor, has not been evaluated toward human NEU2 yet. We studied the regulation of NEU2 activity by siastatin B in vitro and predicted the interaction in silico. Inhibitory and stabilizing effects of siastatin B were an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular bioSystems
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2011